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1 INTRODUCTION

Electrical distribution networks are the final leg
of the network that moves electric power from
generating stations to end users. The vast majority
of the circuits in these networks are above-ground
and exposed to direct damage from strong winds,
broken tree limbs, toppled trees, and flying debris.
These systems are also susceptible to ice storms.
The combined stress of the weight of ice (icing),
the increased wind resistance of the conductors,
and broken tree limbs can damage lines, poles, and
support structures.

These networks are generally operated in a radial
configuration, which makes them susceptible to
single-point failures. Some redundancy is built
into these networks through circuit switching and
alternative power supply points in the network. This
redundancy can be overwhelmed by hurricanes and
major ice storms that cause widespread damage
to these networks. The exposure and limited
redundancy of these networks makes them the
primary cause of long-term electrical outages
following hurricanes and major ice storms.

This paper focuses on electric power outage
forecasting for hurricane-force winds and icing
conditions in a data-poor environment when
distribution network models are not generally
available. The remainder of this paper is organized
as follows: Section 1 provides additional context
for the problem setting and the importance
of this capability development to the National

Infrastructure Simulation and Analysis Center
(NISAC). Section 2 discusses the requirements and
limitations relative to the availability of input data,
computational speed, and presentation of the results.
The literature review in Section 3 discusses existing
methods and the utility of these methods to the
current problem setting. In Section 4 we describe
and mathematically formulate our recommended
approach to adapting current methods to NISAC
requirements.

1.1 Problem Statement

Distribution utilities use first principles-based
power flow solvers on detailed models of their
electrical distribution network to simulate effects of
local faults or other upsets to their systems. The
origin of these faults is generally not specified,
rather, the study goal is to design the network
redundancy and operations to mitigate these
assumed faults. These detailed models could be
extended to evaluate or predict outages resulting
from heavy, widespread damage scenarios, but
several conditions would have to be met. Among
these conditions are the availability of the model,
geolocation of the components in the model, and
sufficient power system component metadata to
enable accurate fragility estimations for hurricane-
force winds and icing conditions.

Distribution network model availability is a
significant challenge. As of 2017, detailed
distribution network models and data are not
routinely reported to any federal agency. Access to
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models and data is feasible only via non-disclosure
agreements (NDAs) with each distribution utility;
there are several thousand distribution utilities in
the continental United States (CONUS). Although
collecting a few detailed models is feasible and
desired for focused studies, this approach is
impractical for CONUS-scale studies or even within
hurricane-prone areas because of the number of
NDAs required.

Even if collecting a large number of detailed
distribution models was feasible, the format of
these models can be quite diverse; as such,
consistent conversion from one format to another
is difficult. Many distribution network databases
are now fully geolocated, however, in our recent
experience, component metadata are sparse or
missing entirely and fragility estimates would
require many assumptions about component quality
and type.

1.2 Importance

The ability to predict electrical outages resulting
from hurricane-force winds and ice damage to
electrical distribution networks is key for electrical
power systems analysis for these extreme events.
It is also a key step in the analysis of cascading
failures in critical or lifeline infrastructure networks
that depend directly or indirectly on electrical
power.

2 BOUNDING REQUIREMENTS AND
LIMITATIONS

The electrical power forecasting model discussed
in this report is intended for use within NISAC.
Analysis scope, metrics utilized, available input
data, and desired output results are subject to key
bounding requirements and limitations, which we
use to frame the remainder of the discussion and
provide context to the literature review in Section 3.

2.1 Analysis Scope

The electrical power outage forecasting model,
associated literature review, and subsequent
development of methods considers all CONUS

locations. The model’s primary function is to
estimate the expected electric power outages from
hurricane-force winds or icing conditions at a
county-level spatial scale. NISAC lacks access
to detail distribution network models so these
estimates will be made using area-based statistical
models that are trained on utility-reported historical
outage data. Although not explicitly incorporated
into the model, this class of methods will capture
the effects of distribution network switching and
redundancy and network hardening if these training
data captures these effects.

2.2 Input Data: Scope and Limitations

The scope of the electrical power outage
forecasting model is CONUS at the county level,
therefore, both static and dynamic input data to the
forecasting tool should be uniformly and publicly
available for all of CONUS at that scale. The input
data must be routinely maintained and updated by
the original data provider or NISAC so that the
model can be run as dynamic conditions change;
e.g., storm track and precipitation; and static or
slowly changing input data evolve, e.g., population,
soil moisture, and vegetation.

2.2.1 Model Training Data

The forecasted response variable is the number of
customers without electric power in each county. To
train the model, we intend to use historical outage
data from the EAGLE-I database (EAGLE-I),
which collects near real-time electric power outage
data. The database includes outages reported by
the utilities for most of the counties in CONUS.
The predictor variables will be quite diverse and
include hurricane gust wind speed, population, land
cover type, standardized precipitation index, and
soil moisture index.

2.2.2 Model Implementation Data

To implement the model for real-time events, we
require the dynamic set of predictor variables to be
available and updated in real time.
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2.3 Analysis Outputs and Presentation

The output of the predictive model will be
the number of customers without electric power
within each county in CONUS. These output data
will be available within LANL’s AWS computing
environment via the AGAVE presentation map layer
or its successors. These data will also be available
in table form.

2.4 Computational Requirements and
Cost

We will train the model in an offline setting where
there are no strict requirements on computational
speed. For operational use of the model, the
model should be able to compute predictions in
less than 5 minutes because there are several
other computational processes to complete in
the 15-minute window allowed for model output
update following the update of input data by other
providers.

3 LITERATURE REVIEW

Considering the key bounding requirements and
limitations discussed in Section 2, we review
the existing literature and discuss its applicability.
Our literature review revealed specific research
focused on forecasting electric power outages due
to wind. The review also identified key outage
forecasting methods and parameters. LANL did
not find significant literature for outage forecasting
due to icing conditions.

3.1 Generalized Linear Models

Linear models assume that the relationship
between the response, y, and predictors, xj , is linear
and that the form of the model is yi =

∑k
j βjxij+εi

where ε iid∼ N(0, σ2). Outage data consist of counts
of the number of customers without electric power
resulting from a hurricane, wind, or ice event. Count
data cannot be negative and the dependence of count
data on the inputs is not expected to vary in linear
fashion over a wide range of the predictors, e.g.,
the number of customers without power should

saturate at very high wind speeds. Normal linear
model theory is not expected to perform well in this
setting.

An alternative that overcomes some of these
issues is a generalized linear model (GLM).
GLMs allow for more complex dependence of the
predicted (dependent) variable Y on the random
(independent) variables xi by introducing an
intermediate linear predictor η and a link function
g. The relationship between the linear predictor
variable and the predictor variables xi is

η = β0 +
∑
i

βixi,

where the βi are the model parameters fitted to
the data. The dependent predicted variable Y is
related to the intermediate linear predictor using the
link function by E[Y ] = g−1(η) where E indicates
the expected value of Y . Different canonical link
functions g are used in conjunction with different
distributional assumptions, including Gaussian,
Poisson, and Gamma. In the case of the Poisson and
negative binomial models, the expected value of
these distribution is E[Y ] = exp(η) corresponding
to a link function g(η) = log(η). That is E[Y ] =
exp(β0 +

∑
i βixi).

GLMs were some of the first models used to
consider electric power outages in Guikema et al.
(6); Liu et al. (18); Guikema (5); Han et al.
(10, 11). Based upon the literature, a comparison
of Poisson and negative binomial models suggests
that the negative binomial distribution is the most
appropriate because the data are over-dispersed, i.e.,
the mean is not equal to the variance as assumed
with a Poisson distribution. The negative binomial
model used to estimate the geographical distribution
of power outages in North and South Carolina
showed the best predictor variables were the number
of transformers in the area, company affected,
maximum gust wind speed, and hurricane effect.

3.2 Generalized Additive Models

Generalized additive models (GAMs) are similar
to GLMs, but they relax the assumption of
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linearity in the intermediate predictor, η. Rather
than using individual predictor variables or linear
combinations of predictors to form the linear
predictor, the linear predictor is related to the
predictors through the use of smoothing splines fi

η = β0 +
∑
i

fi(xi),

e.g., cubic regression splines or thin plate splines
(12). Although flexible, GAMs can lead to over
fitting of the data and can be more difficult to fit
because of the selection of the smoothing functions
fi.

Guikema (5) provided an overview of GAMs and
GLMs for predicting electric power outages. In
particular, Han et al. (10) used GLMs and GAMs to
estimate power outages resulting from hurricanes
and found that the predictive performance was
better for the GAM relative to a GLM, based upon
holdout validation. Guikema et al. (9) compared
GLMs and GAMs to data mining methods, and
found that GAMs and data mining methods had
better predictive accuracy then GLMs, however, the
aggregation of the data can make it difficult to create
detailed geographic damage estimates for all types
of models.

3.3 Classification and Regression Trees

Classification and regression trees (CART) are the
foundation of several ensemble-based methods for
constructing predictive models from data. These
methods do not make any assumptions about
the underlying functional distribution relating the
response and the predictor variables. Rather, the
models are constructed by iteratively partitioning
the predictor data space into sub-regions and fitting
a predictive model within each sub-region. The
partitioning results in a tree structure are called a
decision tree.

In classification trees, the predicted value is not
continuous; it is a type or a label, e.g., red or blue.
The classification tree predicts the most prevalent
type in each sub-region of the predictor data space.
In contrast, a regression tree predicts the mean of

the value of the dependent variable in each sub-
region of the predictor data space. Regression trees
are more applicable to predicting electric power
outages, however, if the training data are limited,
limited, single regression trees have a tendency to
overfit.

A random forest is a non-parametric data mining
ensemble approach developed by Breiman (1)
that mitigates the tendency of regression trees
to overfit. It creates many regression trees using
random subset samples from the full training data
set. Each regression tree is used to make an
independent prediction of the dependent variable;
these predictions are averaged to make the ensemble
prediction. By randomly sampling from the
training data, the regression trees are approximately
uncorrelated and unbiased, which results in better
aggregate performance.

There are several extensions and generalizations
of the random forest approach, including boosted
gradient tree regression, Bayesian additive
regression trees (BART), and quantile regression
forests (QRF). Boosted gradient tree regression
(4) is an additive decision tree that builds a series
of shallow regression trees where the predictors
for each tree are residuals from the previous tree.
As more trees are produced, the residuals of the
previous small trees can become a good predictive
model. These type of trees are considered “weak
learners” because there is not as much information
in each of the trees, although the average over all
trees can be a powerful predictor.

BART is another additive method based on
shallow trees of limited complexity that are weak
learners. The model fit and model prediction is done
by a Markov chain Monte Carlo algorithm.

QRF, developed by Meinshausen (19), is a non-
parametric method to predict conditional quantiles
of the dependent variable using an approach based
on a random forest model. Compared to a traditional
random forest that predicts the mean, QRF provides
more information about the distribution of the
dependent response variable as a function of the
independent predictors.
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Guikema et al. (7) and Nateghi et al. (24, 22)
used the random forest method to predict electric
power outages at different spatial resolutions
for multiple hurricanes. The model captured
the nonlinear structure of the outage data and
produced reasonably accurate prediction estimates
for both power outage durations and number of
outages. He et al. (13) used quantile regression
models and compared them to other machine
learning methods to predict electric power outages
at a 2-kilometer scale using simulated weather
data. They also compare the model to random
forests by Tonn et al. (26), finding that both
models had good out-of-sample accuracy, but that
quantile regression was able to provide additional
information on the uncertainty and accuracy of
the estimates. Nateghi et al. (23) used BART to
predict power outage durations after hurricanes,
while He et al. (13) used BART to predict the
number of outages due to a hurricane with good
predictive accuracy. An additional comparison by
Nateghi et al. (24) between BART and random
forests found the random forest model outperformed
BART, producing better predictive accuracy for
power outage durations.

3.4 Multivariate Adaptive Regression
Splines

Friedman (3) developed multivariate adaptive
regression splines (MARS). Compared to GLM
or GAM, MARS is a flexible regression method
that does not make any assumptions about the
underlying functional form relating the response
and the predictor variables. The MARS method
constructs a basis consisting of hinge functions and
their products in an adaptive way by automatically
selecting appropriate variables and knots for the
set of functions. The result is a continuous hinged
surface across potentially many predictor variables.
The predictions for a set of predictors xi are
determined from a given configuration of knots
using the training data.

Nateghi et al. (23) compared ensemble methods,
BART and CART, and MARS to determine which
model had the best predictive performance for

power outage duration. Of these methods, BART,
followed by MARS, had the best prediction
accuracy and predicted power outage duration
reasonably close to the actual power duration
reported.

3.5 Bayesian Networks

Mensah and Dueñas-Osorio (21) used Bayesian
networks to predict electric power outage due to
hurricane winds in Harris County, Texas. Bayesian
networks are probabilistic graphical models that
represent a set of predictors and their dependencies
by a directed graph, rather than a tree. The model
framework depends on the component fragilities
and topology of the electric power grid. The model
made reasonably accurate predictions of outages
at the ZIP code level, however, it is based upon
the distribution network structure and exceeds the
limitations noted in Section 2.2.

3.6 Summary

Table 1 summarizes the different statistical
methods, predictors, and data sources found in
the literature review. GLMs using the Poisson
distribution are generally a good choice, however,
if the data are over-dispersed, the negative binomial
distribution is more appropriate because it accounts
for the variance being greater than the mean. GAMs
are more flexible due to their nonparametric nature,
but are susceptible to overfitting and can be more
difficult to fit due to the need to find a smoothing
function.

Regression trees are relatively easy to use,
especially when there are several predictors. They
account for interactions of categorical predictors,
i.e., tree species, in a more flexible way, the
relationship between the predictors and response do
not need a linear relationship. Ensemble regression
tree methods are superior to single-tree methods
and include BART, random forest, and quantile
regression forests. Guikema et al. (7) and Nateghi
et al. (24, 22) found that predicting electric
power outages based upon previous storms was
better using these QRF and random forest when
compared to GLMs and GAMs. MARS provides
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reasonable estimates and prediction accuracy with
slightly less accuracy compared to BART, but has
been implemented only in assessing power outage
durations.

Bayesian networks provide a useful machine
learning tool to predict relationships between nodes;
however, they can be computationally expensive
and have only been investigated for settings where
electrical distribution network data were available.
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Table 1. Summary statistical methods for forecasting electric power outages resulting from hurricanes.
Model Predictors
GLM Maximum 3-second gust wind speed, wind duration, soil moisture, precipitation,

land cover database, tree type, company affected, 7-day rainfall (in), soil type
Sources: National Climate Data Center (NCDC), Forest Land Distribution Data, STATSGO,
National Land Cover Database, hurricane wind model
Citations:Li et al. (14); Liu et al. (16, 18); Han et al. (10)
Liu et al. (17, 18); Guikema and Quiring (8)

GAM maximum three-second gust wind speed, wind duration, soil moisture, precipitation,
land cover database
Sources: Duke Energy distribution, Census (population density), GIS-based hurricane wind
field simulation model, NCDC, Landsat, Forest Land Distribution Data, U.S. Department of
Agriculture Natural Resources Conservation Service State Soil Geographic Database
Citations: Guikema and Quiring (8); Han et al. (11); Guikema et al. (9)

Tree Tree and wind gusts, soil moisture, precipitation, land use, tree trimming, soil moisture,
temperature, total accumulated precipitation, and leaves on trees.
Sources: Census (population density), GIS-based hurricane wind field simulation model,
NCDC, Landsat, Forest Land Distribution Data, STATSGO, Standardized Precipitation
Index, tree trimming, power grid data, WRF model
Citations: He et al. (13); Wanik et al. (27); Nateghi et al. (22, 24),
Guikema et al. (7); Nateghi et al. (23); Guikema et al. (9)

MARS Maximum 3-second gust wind speed, wind duration, soil moisture, precipitation,
land cover database, tree trimming, soil moisture, precipitation, land use.
Sources: Census (population density), GIS-based hurricane wind field simulation model,
NCDC, Landsat, Forest Land Distribution Data, U.S. Department of Agriculture Natural
Resources Conservation Service State Soil Geographic Database, power grid data
Citations: Nateghi et al. (23)

Bayesian Private power grid data with transmission substations and transmission lines, tree damage
Citations: Mensah and Dueñas-Osorio (21)

4 PROPOSED METHOD

This literature review has revealed that, given
the limitations on input data available to NISAC,
ensemble regression tree methods such as random
forest, BART, and QRF are preferable to Bayesian
network approaches. When compared to GLM
or GAM, ensemble regression trees are better
adapted to handle a diverse set of predictor
variables, including variables with discrete or
integer representation, e.g., tree species. Several
studies have also shown that ensemble regression
tree methods have better prediction accuracy
than GLMs, GAMS, or MARS. Although
training ensemble regression tree methods may
be computationally slow, these methods are
computationally efficient in implementation.

Based on these comparisons, we recommend
ensemble regression tree methods for the next
generation of NISAC’s electric power outage
prediction capability. Among the different choices
for ensemble regression tree methods, we suggest
development of random forest over QRF and BART
because of its relative maturity in the outage
forecasting literature and its simplicity.

4.1 Random Forest Model

Random forest models are estimated using the
”randomForest” package in R by Liaw et al. (15)
and QRF are estimated using the ”quantregForest”
package by (20) in R, (25). Here we provide a
qualitative and semi-quantitative discussion that
summarizes the technical details of these models.
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Ensemble regression tree (or forest) models use
an underlying general modeling framework of the
form

Y = g(x) + ε, ε ∼ N(0, σ2) (1)

where inferences are made for the response Y using
an unknown function g, which is approximated as
g(x) = E(Y |x), using a p dimensional vector of
inputs x = (x1, · · · , xp). We model g(x) as a linear
combination of regression trees. There are different
methods for combining a set of regression tree
models, such as boosting, bagging, random forests,
and quantile regression forests. Each uses slightly
different linear combination of trees. We focus on
random forests, but also include a discussion of
QRFs because the mathematics are quite similar.

Qualitatively, in a random forest of regression
trees, g(x) is approximated from a sum of m
regression trees

g(x) = (1/m)
m∑
i=1

fi(x), (2)

where fi(x) is a single regression tree.

For each tree, fi(x), and each node in the tree,
we use randomization to select which variable xi
to partition the data space x. Each tree fi(x) is
trained on a different random subset of the training
data. Further, the regressor variable associated with
each node of each tree is selected at random. This
recursive random partitioning selects a random
subset of predictor variables to avoid correlations
between the tree structures. The prediction for a
given tree at a point x is a weighted average of the
original observations with weights depending on
x. The prediction of the random forest is a straight
average over all the trees (Eq. 2).

Breiman (1) provides a more rigorous discussion,
which we summarize here. Each tree in the random
forest is denoted by T (θj) where θj is a vector of
parameters associated with the variables xi used to
partition the data at each node. In each tree T (θj),
there is a set of leaf nodes denoted `(x, θj) that

covers a rectangular sub-region of the predictor
space X = x determined by the parameters θj . For
any predictor in this leaf’s sub-region, the prediction
of the tree T (θj) is an average over all the observed
values in the training data set that also fall in leaf
`(x, θj), i.e.,

µ̂j(x) =
n∑
i

wi(x, θj)Yi (3)

where wi(x, θj) is a weight vector, summing to one,
and equal to a positive value if an observation Xi is
part of a leaf or 0 if it is not.

The prediction of the random forest is an
approximation of the conditional mean, E(Y |x),
constructed by averaging over the predictions of m
trees

E(Y |X = x) = µ̂ =
1

m

m∑
j=1

µ̂j(x).

Quantile regression forests developed by
Meinshausen (19) are a generalization of random
forests. Instead of classifying only the mean, they
estimate the conditional quantiles based upon an
underlying random forest model. The weighted
observations can also provide a good approximation
of the full conditional distribution. The conditional
distribution function of Y given X = x is

F (y|X = x) = P (Y ≤ y|X = x)

= E(1{Y≤y}|X = x)

Using the weights, wi(x), from random forests,
we use QRF to approximate the weighted mean over
the observations of 1{Y≤y} as,

F̂ (y|X = x) =
n∑

i=1

wi(x)1{Y≤y}.

Instead of keeping the mean of the observation, as
in a random forest, QRFs keep the values of all
observations to assess the conditional distribution.
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4.2 Training and Characterization

We will train the random forest model using
historical, county-level electric power customer
outage data for hurricane events taken from the
EAGLE-I database. We will use the following
process to train and characterize the model:

1. Subdivide the original training data randomly
into 10 equal-size subsets and create 10 new
training sets by sequentially holding out one of
the subsets

2. Train 10 random forest models, one for each
of the 10 new training data sets, using standard
methods in the software package R

3. Calculate the prediction error for the hold-out
data for each of the 10 random forest models

4. Generate the final predictive model by
averaging the results from the 10 random forest
models

The prediction error for each of the 10 random
forest models will be computed using two
metrics–Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE). The MAE is an

absolute measurement of the difference between
the predicted value and the true value, which is
calculated by:

MAE =
1

n

n∑
i=1

|ŷi − yi|.

The RMSE measures the magnitude of error of
the predicted values and variability which is defined
as

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

We use the following predictor data, based
upon the findings of Nateghi et al. (22), to
develop the random forest models: hurricane gusts,
wind speeds, seven-day precipitation accumulation,
population, land cover type, elevation, standardized
precipitation index, and soil moisture index. We
will use the MAE and RMSE metrics to compare
models that use all the predictors with models that
use different subsets of predictors to develop the
best subset of predictor variables.

REFERENCES

[1]Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.
[EAGLE-I]EAGLE-I. Energy infrastructure mapping system and the real time energy monitoring dashboard.

https://eagle-i.doe.gov. 2017-04-18.
[3]Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, pages 1–67.
[4]Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of

Statistics, 29(5):1189–1232.
[5]Guikema, S. D. (2009). Natural disaster risk analysis for critical infrastructure systems: An approach

based on statistical learning theory. Reliability Engineering & System Safety, 94(4):855–860.
[6]Guikema, S. D., Davidson, R. A., and Liu, H. (2006). Statistical models of the effects of tree trimming

on power system outages. IEEE Transactions on Power Delivery, 21(3):1549–1557.
[7]Guikema, S. D., Nateghi, R., Quiring, S. M., Staid, A., Reilly, A. C., and Gao, M. (2014). Predicting

hurricane power outages to support storm response planning. IEEE Access, 2:1364–1373.
[8]Guikema, S. D. and Quiring, S. M. (2012). Hybrid data mining-regression for infrastructure risk

assessment based on zero-inflated data. Reliability Engineering & System Safety, 99:178–182.
[9]Guikema, S. D., Quiring, S. M., and Han, S.-R. (2010). Prestorm estimation of hurricane damage to

electric power distribution systems. Risk analysis, 30(12):1744–1752.
[10]Han, S.-R., Guikema, S. D., and Quiring, S. M. (2009a). Improving the predictive accuracy of hurricane

power outage forecasts using generalized additive models. Risk analysis, 29(10):1443–1453.

April 2017 9



Donatella Pasqualini Electric Power Outage Forecasting

[11]Han, S.-R., Guikema, S. D., Quiring, S. M., Lee, K.-H., Rosowsky, D., and Davidson, R. A. (2009b).
Estimating the spatial distribution of power outages during hurricanes in the gulf coast region. Reliability
Engineering & System Safety, 94(2):199–210.

[12]Hastie, T. J. and Tibshirani, R. J. (1990). Generalized additive models, volume 43. CRC press.
[13]He, J., Wanik, D. W., Hartman, B. M., Anagnostou, E. N., Astitha, M., and Frediani, M. E. (2016).

Nonparametric tree-based predictive modeling of storm outages on an electric distribution network. Risk
Analysis.

[14]Li, H., Treinish, L. A., and Hosking, J. R. (2010). A statistical model for risk management of electric
outage forecasts. IBM Journal of Research and Development, 54(3):8–1.

[15]Liaw, A., Wiener, M., and Liaw, M. A. (2015). Package ‘randomforest’.
[16]Liu, H., Davidson, R. A., and Apanasovich, T. V. (2007). Statistical forecasting of electric power

restoration times in hurricanes and ice storms. IEEE Transactions on Power Systems, 22(4):2270–2279.
[17]Liu, H., Davidson, R. A., and Apanasovich, T. V. (2008). Spatial generalized linear mixed models

of electric power outages due to hurricanes and ice storms. Reliability Engineering & System Safety,
93(6):897–912.

[18]Liu, H., Davidson, R. A., Rosowsky, D. V., and Stedinger, J. R. (2005). Negative binomial regression
of electric power outages in hurricanes. Journal of infrastructure systems, 11(4):258–267.

[19]Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research,
7(Jun):983–999.

[20]Meinshausen, N. (2015). quantregForest: Quantile regression forests. R package version 0.2-3.
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